
Wheel-E Self balancing robot

Team BEET
Ethan Knoll
Ben Nollan

ECE 220

Digipen Institute of Technology

16th February 2017

1



1 Abstract

This paper discusses our project for our sophomore year engineering class,
which was a self-balancing autonomous robot. It describes the motivations,
process, and result of our efforts. We also describe the sensors, hardware,
and methods we used to be able to make the robot balance on its own.

2 Introduction

When we were deciding on what project to work on the most important
consideration was a project that would require us to learn something useful.
When we thought about creating a balancing robot we grew excited as we
realized the breadth and value of the methods and sensors that a balancing
robot employed and decided this would be a great project to undertake.
As we researched we found that an accelerometer and a gyrometer were
commonly used for this type of application and the ubiquitousness of these
sensors in engineering applications really appealed to us. We also found that
a control system was a necessity for our robot, and while this was perhaps
beyond our capability we thought it would be worthwhile to try working
with it. Another method we didn’t think we would need, but ended up using
was filtering of sensor data, which is another very beneficial skill. Getting
to work with the techniques and sensors on our balancing robot was really
rewarding, especially when we were finally able to make it balance. We
believe we learned a lot and are also happy with having created a delightful
and intriguing robot.

2.1 Use Model

Our robot is designed to be intuitive and simple to use. Once the robot is
turned on it will not attempt to balance itself until it is held in a vertical
and balanced position straight up. When the robot senses that it is in its
most upright and balanced position it will begin sending power to the motors
and will balance on its own. In the future we intend to connect a remote to
the robot so that it can be controlled by rotating and also be able to move
backwards and forwards.

2



3 Design

Figure 1: Labeled Robot

3.1 Mechanical

As we began to conceptualize how we could build this robot we decided we
could mount all the components we needed on one board that would stand
vertical as the robot balanced. We mounted the motors at the bottom and
the batteries at the top to maximize stability. The Sensor board is mounted
directly below the batteries so that the battery’s weight acts as a damper to
a lot of the vibrations caused by the motors.

3



Figure 2: Comparison of angles from the robot being slowly rotated.

3.2 Sensors

We knew we needed an accelerometer and a gyrometer because examples of
this type of balancing robot we found online all used these two sensors(1).
After we recieved our sensors thought we thought we could get by using only
the gyroscope and monitoring our output to the motors, but the drift of the
gyroscope made it too inaccurate to use on its own. Then we tried using an
accelerometer and a gyrometer because combined their data with a simple
filter as described in another online tutorial(2) gave us a quick and accurate
tilt angle of the robot. If just a gyrometer were used, the angle would drift
over time.(Figure 2) If only an accelerometer was used, the angle would be
very inaccurate whenever the robot was moving.(Figure 3) We chose to go
with the board from Adafruit because the accelerometer and gyrometer came
on a single board, were on the same data line for I2C, and the gyrometer had
16 bits of precision.

3.3 Software

On startup our robot has an initial calibration phase that determines the
zero offset of the gyrometer, this is important because when the gyrometer
is not moving at all it has a small offset from zero. The sensor data is

4



Figure 3: Comparison of angles when robot falls over.

passed through a simplified Kalman filter to combine the accelerometer and
gyrometer data. The sensed angle is then fed into the feedback loop. This
in our case is a PID loop, a loop

4 Parts
Part Number Manufacturer Value Description Voltage I(mA) Supplier Price Quantity
1102 Pololu 19:01 Metal Gearmotor 0-12V 3000 Pololu 29.95 2
1557 Pololu 120mm Wheels – – Pololu 14.95 2
XB24-AWI-001 Digi Series 1 Xbee Module 3.3V ¡250 DigiPen Stock 0 2
AMC1602AR Orient Display 16x2 Character LCD Display 5V 150 OrientLCD 6.35 1
– Tenergy 3Ah NiMh Battery Pack 7.2V – Digipen Stock 0 2
1714 Adafruit 9-DOF IMU Breakout 5V ¡100 Adafruit 19.95 1
OKI-78SR-5 MPC – DC/DC Converter 5V 1500 Mouser 4.30 2
LPC1768 NXP – ARM mbed Microcontroller 3.3-5V ¡250 Digipen Stock 0 1
– Digipen – Scrap Acrylic – – Digipen Stock 0 1
– Molex – RC Battery Connector – – Digipen Stock – 0 1
PIC18F4520 Microchip – PIC Microcontroller 5V ¡100 DigiPen Stock 0 1
NCP5106BPG ON – Mosfet Gate Driver 10-20V 500 Mouser 2.38 4
2SK3703 ON – N-Channel Mosfet 60V 30A Mouser 1.53 8
MIC29300 Micrel 3.3WT 3.3V Regulator 4-30v 3000 DigiPen Stock 0 1
LTV-845 Lite-On – Optocoupler x4 – – Mouser 0.88 1

5



5 Technical Issues

5.1 xBee

When trying to use the xBee we discovered that if the device received too
much data the link between the two would not transfer any data until one
of the xBee modules was power cycled. Our solution to this is to have the
remote not send any data to the robot until it acknowledges that it has
received the previous data that was sent. The data communication works
but still has random stalls for unknown reasons.

5.2 LCD

When first trying to get the LCD to print to the screen it wouldn’t work,
it just wasn’t getting the data. After several hours it was figured out that
the PIC cannot read the state of a port, so all of the operations that only
were meant to modify one pin modified the whole port. The solution to this
was to write wrapper functions around each port that had a buffer built in
to handle setting of individual bits.

5.3 I2C

When we first began working with the I2C protocol we weren’t getting any
data back from the sensors to our microcontroller. The datasheet for the
sensors listed a particular sequence of data transmissions to communicate
with the microcontroller and the mbed compiler offered unique functions to
follow these sequences. Unfortunately this didn’t work so we had to try
a different method. Fortunately the mbed compiler also offered all in one
functions for I2C communication like read and write, which would perform
the sequence described in the datasheets of the sensors automatically. When
we used these functions correctly we finally got data from our sensors.

5.4 Angle of Robot

When we first began trying to calculate the angle of the robot we calcu-
lated this by first taking the arctan of the values we received from our
accelerometer from the z and y axis. This give us the correct angle, but
with some noise and without the response that we would need. Then we

6



tried to determine the angle from the integral of the gyrometer because
the gyrometer provided the rotational velocity of the robot so the integ-
ral would provide an angle. When we performed this calculation we did
get a correct angle calculation and it was in fact more responsive than
the accelerometer, but there was drift because the integral introduced er-
ror, which grew over time. We thought we could neglect this drift by
accounting for power output to the wheels, but this didn’t work. We de-
cided we needed to merge the sensor data with some type of filter, the way
other projects have described, but the kalman filter seemed too complex for
us. We found a website, “http://www.instructables.com/id/Accelerometer-
Gyro-Tutorial/step2/Gyroscope/”, that described a filter that could be ap-
plied to our sensors that was modeled off of a simplified kalman filter. The
idea behind it was to use weighted values of the gyrometer and accelerometer
data to return an angle measurement. It also would use the speed of the gyro-
meter to check the change in angle against the previously weighted angle we
had calculated for every iteration. After we implemented our own version we
found we had a very accurate angle with much less noise and without drift.

5.5 Control Loop

At first we tried to apply a control loop we found online that used only the
data from the gyrometer and the power output to the wheels to gauge where
the robot was and to balance the robot. We could not make this work in
our implementation because the robot became unbalanced very quickly. We
have since modified how we determined our angle and have a promising idea
from a website kindly shown to us by our teacher about how to implement
another control loop, which is our next step in our project.

7



6 Testing and Design Verification

6.1 Unit Tests

6.1.1 Robot

Action Results Troubleshooting
Volt meter across bat-
tery.

Each battery should
be between 7.2 and 9
volts.

Replace/recharge bat-
tery.

Wiggle battery con-
nections.

Robot should stay on. Clean/replace battery
connections.

With batteries con-
nected, turn on the
power switch and
measure the voltage
across the switch.

Should be zero volts or
very close to zero.

Replace the switch.

Place a voltmeter on
the output of the
voltage regulator.

Should be 5volts. Replace regulator.

6.1.2 Controller

Action Results Troubleshooting
Check voltage of bat-
teries.

Should be between
0.9V and 1.6V

Replace Batteries.

Check voltage on reg-
ulator.

Should be between
7.2V and 12V on the
input and 5V on the
output.

Replace regulator if
output not right, oth-
erwise check the wires
to the battery.

Move steering and
throttle.

Values on screen
should move
smoothly.

Replace potentiomet-
ers.

6.2 System Tests

To access the system test menu on the controller, pull the trigger and then
turn the power switch on.

8



Pulling the trigger on
the LCD Test

Will color the entire
screen black.

If dead pixels or lines
are observed, replace
the screen.

Pulling the trigger on
the xBee test.

Will start sending
packets to the robot.

If no packets are re-
ceived, replace xBee.

Pulling the trigger on
the sensor test.

Two bars should ap-
pear on the remote
screen, one for the ac-
celerometer angle and
one for the change in
angle from the gyro-
meter.

If the data does not
look correct, replace
sensor board.

Moving the throttle
on the motor test.

Both motors should
spin in the same dir-
ection.

Check motor wiring.

6.3 Built in Self tests

The robot monitors various components while it is running, which are rep-
resented by the LEDs on the front of the robot.

Led 1 on the micro-
controller is lit.

Sensor board commu-
nication has failed.

Check wires to sensor
board / replace sensor
board.

Led 2 on the micro-
controller is lit.

Battery Voltage is
low.

Recharge batteries.

7 Conclusions and Future Work

When we first thought about building a balancing robot we really hoped
it would help us learn about some important concepts and excite us about
work in engineering and after seeing our robot balance we think that we have
accomplished all of our goals. We learned about working with the ARM
microcontroller and actuators. We learned about I2C and getting data from
our accelerometer and gyrometer. And we struggled with control loops and
filtering our data to get a real time measure of the tilt of our robot. Although
we may have over scoped our project, having something to show for it has

9



really energized us to continue working on it. We’re excited to make it more
robust while it balances and create a remote control for it. While this project
was challenging, and at times we feared it wouldn’t work and had all been in
vain, finally seeing our robot balance helped us appreciate how much we have
learned and has inspired us to continue creating something we can really be
proud of.

8 Author Contributions

Ben Nollan

• PCB

• Controller Schematic

• Motor mount

• Controller Code

• Robot Code

Ethan Knoll

• PCB

• Robot Code

• Control Loop and Filter Research

• Testing

9 Bibliography

(1) Robocv.blogspot.com, ’Computer Vision, Robotics and Arduino: Making
a two-wheeled self-balancing robot’, 2015. [Online]. Available: http://robocv.blogspot.com/2013/03/making-
two-wheeled-self-balancing-robot.html. [Accessed: 05- Dec- 2015].

(2) Gadget Gangster, ’Accelerometer & Gyro Tutorial’, Instructables.com,
2015. [Online]. Available: http://www.instructables.com/id/Accelerometer-
Gyro-Tutorial/. [Accessed: 05- Dec- 2015].

10



10 User Guide

11



Wheel-E 
User 
Manual 

 
 
 
 

 

Team BEET 
Ethan Knoll 
Ben Nollan 
 



Getting to Know Your Wheel-E 
If you are reading this then you have recently acquired and are in possession of  a Wheel-E autonomous 

self balancing robot! The Wheel-E is designed to stay upright on its own two wheels and remote controlled for 
hours of interactive enjoyment. While there are only a few components and setup is not required, a simple 
understanding of the robot will ensure robust and long term operation of your new Wheel-E! 

This manual explains the basic operation and maintenance of the robot. Please read carefully and keep for 
future reference. 
 

Getting Started 
● How to Begin Balancing the Robot 

○ Have the robot laying on a flat surface. 
○ Turn the power switch on the robot to “ON”. 
○ Wait for the green status light on the robot to start blinking (should 

be about one second). 
○ Lift the robot to a balanced upright position and wait until it starts 

trying to balance to let go. 
○ At this point the robot should maintain an upright position by itself. 

 
 
 
 
 
 
 
 



 
● Controlling the Wheel-E 

○ Turning the remote on by  
■ Verify that there are fresh batteries in the remote and turn the switch on. 
■ This will turn on the remote and the text “Wheel-E” should be seen along 

with two indicator bars. 
● The left bar indicates turn and is controlled by the wheel 
● The right bar indicates forward and backward movement and is 

controlled by the trigger. 
■ The remote will connect to it automatically. 

○ The robot can now be remotely controlled by pulling the trigger of the remote 
■ To move the robot forwards pull the trigger. 
■ To move the robot backwards push the trigger. 

○ Use the wheel on the remote control to turn the Wheel-E left and right 
accordingly. 

■ Turning the wheel clockwise turns the Robot right. 
■ Turning the wheel counter-clockwise turns the Robot left. 

 
 
 
 
 
 
 



Troubleshooting 
If your Wheel-E is not operating as intended: 

○ If the remote screen is blank the remote may need new batteries 
○ If the robot is not balancing well try turning the robot off and then back on again thereby 

recalibrating the robot. 
○ If the remote fails to control the robot, power cycle the remote, sometimes many power cycles are 

necessary. 

Maintenance 
To keep the Wheel-E operating at peak performance some maintenance is required. 

● Using fully charged batteries in the Wheel-E will ensure that the robot has enough power to 
maintain its balance and protect it from any damage that could occur by falling over. 

○ The Wheel-E uses two 7.2Volt RC car battery packs, these can be recharged using an RC car 
battery charger rated for 7.2Volts. 

○ Your Wheel-E will not operate if these are discharged. 
● Avoid rough handling of the robot to keep the components working optimally. 
● Cleaning of the motors to keep debris and dirt out of the motors may be required. 
● If the robot won’t balance even after checking the batteries and its initial calibration there may be a 

problem with the software and you should return the robot to your distributor to get the latest 
software. 



Figure 4: Schematic of the robot.

16



Figure 5: Schematic of the controller.

Figure 6: Flowchart of Feedback Loop

17



Figure 7: Block Diagram of Data on the Robot

Figure 8: Block Diagram of Data on the Controller

18


